If you found this site useful, please cite: Croote, D., Quake, S.R. Food allergen detection by mass spectrometry: the role of systems biology. npj Syst Biol Appl. 2016 Sep 29; 2:16022.

Allergen Targets


Food Matrix


Comparative study of GH-transgenic and non-transgenic amago salmon (Oncorhynchus masou ishikawae) allergenicity and proteomic analysis of amago salmon allergens

Nakamura R., Satoh R., Nakajima Y., Kawasaki N., Yamaguchi T., Sawada J., Nagoya H., Teshima R.

Regulatory Toxicology and Pharmacology (2009), 55, 3, 300--308 DOI: 10.1016/j.yrtph.2009.08.002


Genetically modified (GM) foods are beneficial from the standpoint of ensuring a constant supply of foodstuffs, but they must be tested for safety before being released on the market, including by allergenicity tests to ensure that they do not contain new allergens or higher concentrations of known allergens than the same non-GM foods. In this study we used GM-amago salmon into which a growth hormone gene had been introduced and compared the allergens contained in the GM and the non-GM-amago salmons. We used a combination of Western blotting with allergen-specific antibodies and a proteomic analysis of their allergens with patients’ sera, a so-called allergenome analysis, to analyze allergens. Western blotting with specific antibodies showed no increase in the content of the known allergens fish parvalbumin and fish type-I collagen in GM-amago salmon, in comparison with their content in non-GM-amago salmon. The allergenome analysis of two fish-allergic patients allowed us to identify several IgE-binding proteins in amago salmon, including parvalbumin, triose-phosphate isomerase, fructose-bisphosphate aldolase A, and serum albumin, and there were no qualitative differences in these proteins between GM and non-GM-amago salmons. These results indicate that amago salmon endogenous allergen expression does not seem to be altered by genetic modification.